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Abstract. The coherent states for a particle on a sphere are introduced. These states are labelled
by points of the classical phase space, i.e. the position on the sphere and the angular momentum of
a particle. As with the coherent states for a particle on a circle discussed in Kowalski et al (1996
J. Phys. A: Math. Gen. 29 4149), we deal with a deformation of the classical phase space related
to quantum fluctuations. The expectation values of the position and the angular momentum in the
coherent states are regarded as the best possible approximation of the classical phase space. The
correctness of the introduced coherent states is illustrated by an example of the rotator.

1. Introduction

It has become a cliché to say that coherent states abound in quantum physics [1]. Moreover,
it turns out that they can also be applied in the theory of quantum deformations [2] and even
in the theory of classical dynamical systems [3].

In spite of the fact that the problem of quantization of particle motion on a sphere is at
least 70 years old, there still remains an open question concerning the coherent states for a
particle on a sphere. Indeed, the celebrated spin coherent states introduced by Radcliffe [4]
and Perelomov [5] are labelled by points of a sphere, i.e. the elements of the configuration
space. On the other hand, it seems that as with the standard coherent states, the coherent states
for a particle on a sphere should be marked with points of the phase space rather than the
configuration space.

The aim of this work is to introduce the coherent states for a quantum particle on the sphere
S2, labelled by points of the phase space, that is the cotangent bundle T ∗S2. The construction
follows the general scheme introduced in [6] for the case of motion in a circle, based on the polar
decomposition of the operator defining via the eigenvalue equation the coherent states. From
the technical point of view our treatment utilizes both the Barut–Girardello [7] and Perelomov
approach [5]. Namely, as with the Barut–Girardello approach the coherent states are defined
as the eigenvectors of some non-Hermitian operators. On the other hand, in analogy to the
Perelomov formalism those states are generated from some ‘vacuum vector’, nevertheless in
opposition to the Perelomov group-theoretic construction, the coherent states are obtained by
means of the non-unitary action.

In section 2 we recall the construction of the coherent states for a particle on a circle.
Sections 3–6 are devoted to the definition of the coherent states for a particle on a sphere
and discussion of their most important properties. For an easy illustration of the introduced
approach we study in section 7 the case with free motion on a sphere.

0305-4470/00/346035+14$30.00 © 2000 IOP Publishing Ltd 6035



6036 K Kowalski and J Rembieliński

2. Coherent states for a particle on a circle

In this section we recall the basic properties of the coherent states for a particle on a circle
introduced in [6]. Consider the case of free motion in a circle. For the sake of simplicity we
assume that the particle has unit mass and it moves in a unit circle. The classical Lagrangian
is

L = 1
2 ϕ̇

2 (2.1)

so the angular momentum canonically conjugate to the angle ϕ is given by

J = ∂L

∂ϕ̇
= ϕ̇ (2.2)

and the Hamiltonian can be written as

H = 1
2J

2. (2.3)

Evidently, we have the Poisson bracket of the form

{ϕ, J } = 1 (2.4)

implying according to the rules of the canonical quantization the commutator

[ϕ̂, Ĵ ] = i (2.5)

where we set h̄ = 1. The operator ϕ̂ does not take into account the topology of the circle and
(2.5) needs very subtle analysis. The better candidate to represent the position of a particle on
the unit circle is the unitary operator U

U = eiϕ̂ . (2.6)

Indeed, the substitution ϕ̂ → ϕ̂ + 2nπ does not change U , i.e. U preserves the topology of the
circle. The operator U leads to the algebra

[Ĵ , U ] = U (2.7)

whereU is unitary. We would like to stress that (2.6) was used only for the heuristic derivation
of (2.7) which is the correct quantization rule. Consider the eigenvalue equation

Ĵ |j〉 = j |j〉. (2.8)

Using (2.7) and (2.8) we find that the operators U and U † are the ladder operators, namely

U |j〉 = |j + 1〉 (2.9a)

U †|j〉 = |j − 1〉. (2.9b)

Demanding the time-reversal invariance of representations of the algebra (2.7), we conclude
[6] that the eigenvalues j of the operator Ĵ can be only integer (boson case) or half-integer
(fermion case).

Now consider the eigenvalue equation satisfied by the standard coherent states |z〉 [8, 9]
with complex z, of the form

eiâ|z〉 = eiz|z〉 (2.10)

where â ∼ q̂ + ip̂ is the standard Bose annihilation operator and q̂ and p̂ are the position and
momentum operators, respectively. In analogy with (2.10) we define the coherent states |ξ〉
for a particle on a circle, where ξ is a complex coordinate parametrizing the classical phase
space, by means of the eigenvalue equation

Z|ξ〉 = ξ |ξ〉 (2.11)
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where

Z := ei(ϕ̂+iĴ ). (2.12)

Hence, making use of the Baker–Hausdorff formula we obtain

Z = e−Ĵ+ 1
2U. (2.13)

We remark that the complex number ξ should parametrize the cylinder which is the classical
phase space for the particle moving in a circle. The convenient parametrization of ξ consistent
with the form of the operator Z such that

ξ = e−l+iϕ (2.14)

arises from the deformation of the circular cylinder by means of the transformation

x = e−l cosϕ y = e−l sin ϕ z = l. (2.15)

The coherent states |ξ〉 can be represented as

|ξ〉 = e−(ln ξ)Ĵ |1〉 (2.16)

where

|1〉 =
∞∑

j=−∞
e− 1

2 j
2 |j〉. (2.17)

The coherent states satisfy

〈ξ |Ĵ |ξ〉
〈ξ |ξ〉 ≈ l (2.18)

where the maximal error arising in the case l → 0 is of the order of 0.1% and we have the
exact equality in the case with l integer or half-integer. Therefore, l can be identified with the
classical angular momentum. Furthermore, we have

〈ξ |U |ξ〉
〈ξ |ξ〉 ≈ e−1/4eiϕ. (2.19)

It thus appears that the average value of U in the normalized coherent state does not belong to
the unit circle. On introducing the relative average of U of the form

〈U〉ξ
〈U〉η := 〈ξ |U |ξ〉

〈η|U |η〉 (2.20)

where |ξ〉 and |η〉 are the normalized coherent states, we find

〈U〉ξ
〈U〉1

≈ eiϕ. (2.21)

From (2.21) it follows that the relative expectation value 〈U〉ξ /〈U〉1 is the most natural
candidate to describe the average position of a particle on a circle and ϕ can be regarded
as the classical angle.

We remark that the coherent states on the circle have been recently discussed by Gonzáles
et al [10]. In spite of the fact that they formally generalize the coherent states described
above, the ambiguity of the definition of those states manifesting in their dependence on some
extra parameter, can be avoided only by demanding the time-reversal invariance mentioned
earlier, which leads precisely to the coherent states introduced in [6]. Since the time-reversal
symmetry seems to be fundamental one for the motion of the classical particle in a circle and
makes the quantization unique, therefore the generalization of the coherent states discussed in
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[10] which does not preserve that symmetry is of interest rather from the mathematical point
of view.

Bearing in mind the properties of the standard coherent states, one may ask about the
minimalization of the Heisenberg uncertainty relations by the introduced coherent states for a
particle on a circle. In our opinion, in the case with the compact manifolds the minimalization
of the Heisenberg uncertainty relations is not an adequate tool for the definition of the coherent
states. A counterexample can be easily deduced from (2.7)–(2.9). Indeed, taking into account
(2.8) and (2.9) we find that for the eigenvectors |j〉s of the angular momentum Ĵ the equality
sign is attended in the Heisenberg uncertainty relations implied by (2.7) such that

(�Ĵ )2 � 1

4

|〈U〉|2
1 − |〈U〉|2 . (2.22)

More precisely, for these states (2.22) takes the form 0 = 0. On the other hand, the vectors
|j〉s are clearly a rather poor candidate for the coherent states. In our opinion the fact that the
coherent states are ‘the most classical’ ones is better described by the following easily proven
formulae:

(�Ĵ )2 ≈ constant (2.23)

〈U 2〉
〈U〉2

≈ constant (2.24)

where the approximations are very good ones. In fact, these relations mean that the quantum
variables Ĵ and U are at a practically constant ‘distance’ from their classical counterparts
〈Ĵ 〉 and 〈U〉, respectively, and therefore the quantum observables and the corresponding
expectation values connected with the classical phase space are mutually related. We point
out that in the case with the standard coherent states for a particle on a real line we have the
exact formulae

(�p̂)2 = constant (2.25)

(�q̂)2 = constant. (2.26)

It seems to us that the approximative nature of the relations (2.23) and (2.24) is related to the
compactness of the circle.

3. Unitary representations of the e(3) algebra and quantum mechanics on a sphere

Our experience with the case of the circle discussed in the previous section indicates that in
order to introduce the coherent states we should first identify the algebra adequate for the study
of the motion on a sphere. The fact that the algebra (2.7) referring to the case with the circle S1

is equivalent to the e(2) algebra, whereE(2) is the group of the plane consisting of translations
and rotations,

[Ĵ , Xα] = iεαβXβ [Xα,Xβ] = 0 α, β = 1, 2 (3.1)

realized in a unitary irreducible representation by Hermitian operators

X1 = r(U + U †)/2 X2 = r(U − U †)/2i (3.2)

where the Casimir is

X2
1 + X2

2 = r2 (3.3)

and εαβ is the antisymmetric tensor, indicates that the most natural algebra for the case with
the sphere S2 is the e(3) algebra such that

[Ji, Jj ] = iεijkJk [Ji, Xj ] = iεijkXk [Xi,Xj ] = 0 i, j, k = 1, 2, 3. (3.4)
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Indeed, the algebra (3.4) has two Casimir operators given in a unitary irreducible representation
by

X2 = r2 J · X = λ (3.5)

where the dot designates the scalar product. Therefore, as with the generators Xα , α = 1, 2,
describing the position of a particle on the circle, the generatorsXi , i = 1, 2, 3, can be regarded
as quantum counterparts of the Cartesian coordinates of the points of the sphere S2 with radius
r . We point out that unitary irreducible representations of (3.4) can be labelled by r and the
new scale-invariant parameter ζ = λ

r
. It is clear that ζ is simply the projection of the angular

momentum J on the direction of the radius vector of a particle. Since we did not find any
denomination for such an entity in the literature, therefore we have decided to call ζ the twist
of a particle.

Let us now recall the basic properties of the unitary representations of the e(3) algebra. The
e(3) algebra expressed with the help of operators J3, J± = J1 ± iJ2, X3 and X± = X1 ± iX2,
takes the form

[J+, J−] = 2J3 [J3, J±] = ±J± (3.6a)

[J±, X∓] = ±2X3 [J±, X±] = 0 [J±, X3] = ∓X± (3.6b)

[J3, X±] = ±X± [J3, X3] = 0 (3.6c)

[X+, X−] = [X±, X3] = 0. (3.6d)

Consider the irreducible representation of the above algebra in the angular momentum basis
spanned by the common eigenvectors |j,m; r, ζ 〉 of the operators J2 = J+J− + J 2

3 − J3, J3,
X2 and J · X/r

J2|j,m; r, ζ 〉 = j (j + 1)|j,m; r, ζ 〉 J3|j,m; r, ζ 〉 = m|j,m; r, ζ 〉 (3.7a)

X2|j,m; r, ζ 〉 = r2|j,m; r, ζ 〉 (J · X/r)|j,m; r, ζ 〉 = ζ |j,m; r, ζ 〉 (3.7b)

where −j � m � j . Recall that

J±|j,m; r, ζ 〉 =
√
(j ∓m)(j ±m + 1) |j,m± 1; r, ζ 〉. (3.8)

The operators X± and X3 act on the vectors |j,m; r, ζ 〉 in the following way:

X+|j,m; r, ζ 〉 = − r
√
(j + 1)2 − ζ 2

√
(j + m + 1)(j + m + 2)

(j + 1)
√
(2j + 1)(2j + 3)

|j + 1,m + 1; r, ζ 〉

+
ζ r

√
(j −m)(j + m + 1)

j (j + 1)
|j,m + 1; r, ζ 〉

+
r
√
j 2 − ζ 2

√
(j −m− 1)(j −m)

j
√
(2j − 1)(2j + 1)

|j − 1,m + 1; r, ζ 〉 (3.9a)

X−|j,m; r, ζ 〉 = r
√
(j + 1)2 − ζ 2

√
(j −m + 1)(j −m + 2)

(j + 1)
√
(2j + 1)(2j + 3)

|j + 1,m− 1; r, ζ 〉

+
ζ r

√
(j −m + 1)(j + m)

j (j + 1)
|j,m− 1; r, ζ 〉

− r
√
j 2 − ζ 2

√
(j + m− 1)(j + m)

j
√
(2j − 1)(2j + 1)

|j − 1,m− 1; r, ζ 〉 (3.9b)
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X3|j,m; r, ζ 〉 = r
√
(j + 1)2 − ζ 2

√
(j −m + 1)(j + m + 1)

(j + 1)
√
(2j + 1)(2j + 3)

|j + 1,m; r, ζ 〉

+
ζ rm

j (j + 1)
|j,m; r, ζ 〉 +

r
√
j 2 − ζ 2

√
(j −m)(j + m)

j
√
(2j − 1)(2j + 1)

|j − 1,m; r, ζ 〉. (3.9c)

An immediate consequence of (3.9) is the existence of the minimal j = jmin satisfying

jmin = |ζ |. (3.10)

Thus, it turns out that in the representation defined by (3.9) the twist ζ can be only integer or
half-integer. We finally write down the orthogonality and completeness conditions satisfied
by the vectors |j,m; r, ζ 〉 such that

〈j,m; r, ζ |j ′,m′; r, ζ 〉 = δjj ′δmm′ (3.11)

∞∑
j=|ζ |

j∑
m=−j

|j,m; r, ζ 〉〈j,m; r, ζ | = I (3.12)

where I is the identity operator.

4. Definition of coherent states for a particle on a sphere

Now, our experience with the circle indicates that one should identify by means of the e(3)
algebra an analogue of the unitary operator U (2.6), representing the position of a particle on
a sphere. To do this, let us recall that a counterpart of the ‘position’ eiϕ on the circle S1 is a
unit length imaginary quaternion which can be represented with the help of the Pauli matrices
σi , i = 1, 2, 3, as

η = in · σ (4.1)

where n2 = 1. Note that η is simply an element of the SU(2) group and it is related to
the S2 ≈ SU(2)/U(1) quotient space. Therefore, the most natural choice for the ‘position
operator’ of a particle on a sphere is to set

V = 1

r
σ · X (4.2)

where Xi , i = 1, 2, 3 obey (3.4) and (3.9) and we have omitted for convenience the imaginary
factor i. Furthermore, let us introduce a version of the Dirac matrix operator [11]

K := −(σ · J + 1). (4.3)

Observe that

V † = V K† = K. (4.4)

Making use of the operators V and K we can write the relations defining the e(3) algebra in
the space of the unitary irreducible representation introduced above as

(Tr σK)2 = 4K(K + 1) (4.5a)

[K,V ]+ = TrKV (4.5b)

V 2 = I (4.5c)

where TrA = A11 + A22 and the subscript ‘+’ designates the anticommutator. In particular,

TrKV = −2J · X/r = −2ζ. (4.6)
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It should also be noted that in view of (4.4) and (4.5c) V satisfies the unitarity condition
V †V = I .

We now introduce the vector operator Z generating, via the eigenvalue equation analogous
to (2.11), the coherent states for a particle on a sphere S2. The experience with the circle
(see equation (2.13)) suggests the following form of the ‘polar decomposition’ for the matrix
operator counterpart Z of the operator Z:

Z = e−KV. (4.7)

Indeed, it is easy to see that in the case of the circular motion in the equator defined
semiclassically by J1 = J2 = 0 and X3 = 0, Z reduces to the diagonal matrix operator
withZ given by (2.13) and its Hermitian conjugate on the diagonal. Furthermore, using (4.5b)
we find

Z − Z−1 = 2ζK−1 sinhK. (4.8)

Motivated by the complexity of the problem we now restrict to the simplest case of the twist
ζ = 0 when (4.8) takes the form

Z2 = I. (4.9)

In the following we confine ourselves to the case ζ = 0. The general case with arbitrary ζ �= 0
will be discussed in a separate work. Besides (4.9) we also have the remarkably simple relation
(4.5b) referring to ζ = 0 such that

[K,V ]+ = 0. (4.10)

Note that the case ζ = 0 is the ‘most classical’ one. Indeed, the projection of the angular
momentum onto the direction of the radius vector should vanish for the classical particle on
a sphere. It should also be noted that in view of (3.10) js and ms labelling the basis vectors
|j,m; r, ζ 〉 are integer in the case of the twist ζ = 0. We finally point out that the condition
ζ = 0 ensures the invariance of the irreducible representation of the e(3) algebra under time
inversions and parity transformations which change the sign of the product J · X. Clearly,
demanding the time reversal or the parity invariance when ζ �= 0 one should work with
representations involving both ζ and −ζ .

We now return to (4.7). Making use of (4.10) and the fact that the matrix operator V in
view of (4.2) is a traceless one we obtain for ζ = 0

TrZ = 0. (4.11)

Hence,

Z = σ · Z. (4.12)

Taking into account (4.9) we obtain from (4.12)

Z2 = 1 (4.13)

and

[Zi, Zj ] = 0 i, j = 1, 2, 3. (4.14)

As with (4.2) describing in the matrix language the position of a quantum particle on a
sphere, the matrix operator (4.12) can be only interpreted as a convenient arrangement of the
operators Zi generating the coherent states, simplifying the algebraic analysis of the problem.
Accordingly, we define the coherent states for a quantum mechanics on a sphere in terms of
operators Zi , as the solutions of the eigenvalue equation such that

Z|z〉 = z|z〉 (4.15)
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where in view of (4.13) z2 = 1. What is Z? Using (4.7), (4.2), (4.3) and setting ζ = 0, we
find after some calculation

Z =
(

e1/2

√
1 + 4J2

sinh 1
2

√
1 + 4J2 + e1/2 cosh 1

2

√
1 + 4J2

)
X

r

+ i

(
2e1/2

√
1 + 4J2

sinh 1
2

√
1 + 4J2

)
J × X

r
. (4.16)

We remark that Zi have the structure resembling the standard annihilation operators. In fact,
one can easily check that it can be written as a combination

Z = aX + ibP (4.17)

of the ‘position operator’ X and the ‘momentum’ P , where the coefficients a and b are
functions of J2. We finally point out that derivation of the operator Z (4.16) without knowledge
of the matrix operator Z seems to be a very difficult task.

5. Construction of the coherent states

In this section we construct the coherent states specified by the eigenvalue equation (4.15).
On projecting (4.15) on the basis vectors |j,m; r〉 ≡ |j,m; r, 0〉 and using (3.7a), (3.8) and
(3.9) with ζ = 0 we arrive at the system of linear difference equations satisfied by the Fourier
coefficients of the expansion of the coherent state |z〉 in the basis |j,m; r〉. The direct solution
of such a system in the general case seems to be a difficult task. Therefore, we adopt the
following technique. We first solve the eigenvalue equation for z = n3 = (0, 0, 1), and then
generate the coherent states from the vector n3 using the fact (see (4.16)) that Z is a vector
operator. As demonstrated in the next section the case with z = n3 refers to x = (0, 0, 1)
and l = 0, where x is the position and l the angular momentum, respectively, i.e. the particle
resting on the ‘north pole’ of the sphere. Let us write down the eigenvalue equation (4.15) for
z = n3,

Z|n3〉 = n3|n3〉. (5.1)

Using the following relations which can be easily derived with the help of (4.16), (3.7a), (3.8)
and (3.9) with ζ = 0:

Z1|j,m; r〉 = −1

2
e−j−1

√
(j + m + 1)(j + m + 2)

(2j + 1)(2j + 3)
|j + 1,m + 1; r〉

+
1

2
ej

√
(j −m− 1)(j −m)

(2j − 1)(2j + 1)
|j − 1,m + 1; r〉

+
1

2
e−j−1

√
(j −m + 1)(j −m + 2)

(2j + 1)(2j + 3)
|j + 1,m− 1; r〉

− 1

2
ej

√
(j + m− 1)(j + m)

(2j − 1)(2j + 1)
|j − 1,m− 1; r〉 (5.2a)
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Z2|j,m; r〉 = i

2
e−j−1

√
(j + m + 1)(j + m + 2)

(2j + 1)(2j + 3)
|j + 1,m + 1; r〉

− i

2
ej

√
(j −m− 1)(j −m)

(2j − 1)(2j + 1)
|j − 1,m + 1; r〉

+
i

2
e−j−1

√
(j −m + 1)(j −m + 2)

(2j + 1)(2j + 3)
|j + 1,m− 1; r〉

− i

2
ej

√
(j + m− 1)(j + m)

(2j − 1)(2j + 1)
|j − 1,m− 1; r〉 (5.2b)

Z3|j,m; r〉 = e−j−1

√
(j −m + 1)(j + m + 1)

(2j + 1)(2j + 3)
|j + 1,m; r〉

+ ej
√

(j −m)(j + m)

(2j − 1)(2j + 1)
|j − 1,m; r〉 (5.2c)

it can be easily checked that the solution to (5.1) is given by

|n3〉 =
∞∑
j=0

e− 1
2 j (j+1)

√
2j + 1|j, 0; r〉. (5.3)

Now, using the commutator

[w · J,Z] = −iw × Z (5.4)

where w ∈ C
3, we generate the complex rotation of Z

ew·JZe−w·J = cosh
√

w2 Z − i
sinh

√
w2

√
w2

w × Z +
1 − cosh

√
w2

w2
w(w · Z). (5.5)

Taking into account (5.5) and (4.15) we find that the coherent states can be expressed by

|z〉 = ew·J |n3〉 (5.6)

where w is given by

w = arccoshz3√
1 − z2

3

z × n3. (5.7)

It thus appears that the coherent states can be written as

|z〉 = exp


arccoshz3√

1 − z2
3

(z × n3) · J


 |n3〉. (5.8)

We remark that the discussed coherent states are generated analogously as in the case of the
circle described by equation (2.16). The formula (5.8) can be furthermore written in the form

|z〉 = eµJ−eγ J3 eνJ+ |n3〉 (5.9)

where

µ = z1 + iz2

1 + z3
ν = −z1 + iz2

1 + z3
γ = ln

1 + z3

2
. (5.10)
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Finally, equations (5.9), (5.3), (3.7a) and (3.8) taken together yield the following formula on
the coherent states:

|z〉 =
∞∑
j=0

e− 1
2 j (j+1)

√
2j + 1

j∑
m=0

νm

m!

(j + m)!

(j −m)!
eγm

j+m∑
k=0

µk

k!

√
(j −m + k)!

(j + m− k)!
|j,m− k; r〉 (5.11)

where µ, ν and γ are expressed by (5.10) and z2 = 1. Taking into account the identities
n∑

s=0

(s + k)!

(s + m)!s!(n− s)!
zs = k!

m!n!
2F1(−n, k + 1,m + 1; −z) (5.12)

Cα
n (x) = 6(n + 2α)

6(n + 1)6(2α)
2F1(−n, n + 2α, α + 1

2 ; 1
2 (1 − x)) (5.13)

where 2F1(a, b, c; z) is the hypergeometric function, Cα
n (x) are the Gegenbauer polynomials

and 6(x) is the gamma function, we obtain

〈j,m; r|z〉 = e− 1
2 j (j+1)

√
2j + 1

(2|m|)!
|m|!

√
(j − |m|)!
(j + |m|)!

(−ε(m)z1 + iz2

2

)|m|
C

|m|+ 1
2

j−|m|(z3) (5.14)

where ε(m) is the sign of m. Let us recall in the context of the relations (5.14) that the
polynomial dependence of the projection of coherent states onto the discrete basis vectors, on
the complex numbers parametrizing those states is one of their most characteristic properties.
Clearly, the polynomials (5.14) should span via the ‘resolution of the identity operator’ the
Fock–Bargmann representation. We recall that the existence of such a representation is one of
the most important properties of coherent states. The problem of finding the Fock–Bargmann
representation in the discussed case of the coherent states for a particle on a sphere is technically
complicated and it will be discussed in a separate work. Finally, note that the coherent states
|z〉 are evidently stable under rotations.

6. Coherent states and the classical phase space

We now show that the introduced coherent states for a quantum particle on a sphere are labelled
by points of the classical phase space, that is T ∗S2. Referring back to equation (4.16) and
taking into account the fact that the classical limit corresponds to large js, we arrive at the
following parametrization of z by points of the phase space:

z = cosh |l| x

r
+ i

sinh |l|
|l| l × x

r
(6.1)

where the vectors l,x ∈ R
3, fulfil x2 = r2 and l · x = 0, i.e. we assume that l is the classical

angular momentum and x is the radius vector of a particle on a sphere. In accordance with
the formulae (4.15) and (4.13) the vector z satisfies z2 = 1. Thus, the vector z is really
parametrized by the points (x, l) of the classical phase space T ∗S2.

Consider now the expectation value of the angular momentum operator J in a coherent
state. The explicit formulae which can be derived with the help of (3.7a), (3.8), (3.12) and
(5.14) are too complicated to reproduce them herein. From computer simulations it follows
that

〈J〉z = 〈z|J |z〉
〈z|z〉 ≈ l. (6.2)

Nevertheless, in opposition to the case with circular motion, the approximate relation (6.2)
does not hold for practically arbitrarily small |l|. Namely, we have found that whenever |l| ∼ 1,
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then (6.2) is not valid. Note that returning to dimensional entities in the formulae like (3.6)
we measure |l| in units of h̄, so in physical units we deal rather with L = h̄l. For |l| � 10
the relative error |(〈Ji〉z − li)/〈Ji〉z|, i = 1, 2, 3, is small. More precisely, if |l| ∼ 10, then
|(〈Ji〉z − li)/〈Ji〉z| ∼ 1%. In other words, in the case of motion on a sphere, the quantum
fluctuations are not negligible for |L| ∼ 1h̄ and the description based on the concept of the
classical phase space is not an adequate one. However, it must be borne in mind that the
condition |L| � 10 h̄, when (6.2) holds is not the same as the classical limit |l| → ∞. We only
point out that 10 h̄ ≈ 10−33 J s. It thus appears that the parameter l in (6.2) can be identified
with the classical angular momentum divided by h̄.

We now study the role of the parameter x in (6.1). As with the momentum operator J the
explicit relations obtained by means of (3.9) with ζ = 0, equations (3.12) and (5.14) are too
complicated to write them down herein. The computer simulations indicate that

〈X〉z = 〈z|X|z〉
〈z|z〉 ≈ e−1/4x. (6.3)

It seems that the formal resemblance of the formula (6.3) and (2.19) referring to the case with
the circular motion is not an accidental one. The range of application of (6.3) is the same as
for (6.2), i.e. |l| � 10. Because of the term e−1/4, it appears that the average value of X does
not belong to the sphere with radius r . Proceeding analogously as in the case of the circle we
introduce the relative average value of X of the form

〈〈Xi〉〉z = 〈Xi〉z

〈Xi〉wi

i = 1, 2, 3 (6.4)

where |wi〉 is a coherent state with

wk = cosh |l|nk + i
sinh |l|

|l| l × nk k = 1, 2, 3 (6.5)

where nk is the unit vector along the k coordinate axis and l is the same as in (6.1). In view
of (6.3) and (6.4) we have

〈〈X〉〉z ≈ x. (6.6)

Therefore, the relative expectation value 〈〈X〉〉z seems to be the most natural one to describe
the average position of a particle on a sphere.

We have thus shown that the parameter x can be immediately related to the classical radius
vector of a particle on a sphere. As with the case of circular motion (see formulae (2.18) and
(2.21)), we interpret the relations (6.2) and (6.6) as the best possible approximation of the
classical phase space. In this sense the coherent states labelled by points of such a deformed
phase space are closest to the classical ones. The quantum fluctuations which are the reason for
the approximate nature of (6.2) and (6.6) are in our opinion a characteristic feature of quantum
mechanics on a sphere.

We finally remark that the discussion of the Heisenberg uncertainty relations analogous to
that referring to the circle (see section 2) can also be performed in the case with the coherent
states for a particle on a sphere. For example, a counterpart of the formula (2.22) is

(�J)2 � 1

2

1
2 Tr〈V 〉2

1 − 1
2 Tr〈V 〉2

(6.7)

where according to equation (4.2) we have 〈V 〉 = 1
r
σ · 〈X〉. Such a discussion as well as

the detailed analysis of the Heisenberg uncertainty relations for the quantum mechanics on a
compact manifold will be the subject of a separate paper which is in preparation.
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Figure 1. The plot of lnpj,m (see (7.4)) with fixed m = 0 and z given by (6.1) where
x = (0.412, 0.412, 0.812) and l = (8.124,−8.124, 0). Since l2 = 132, therefore jmax = 11
coincides with the positive root of equation (7.5).

7. Simple application: the rotator

We now illustrate the actual treatment by the example of a free twist-0 particle on a sphere,
i.e. the rotator. The corresponding Hamiltonian is given by

Ĥ = 1
2J2. (7.1)

By (3.7a) the normalized solution of the Schrödinger equation

Ĥ |E〉 = E|E〉 (7.2)

can be expressed by

|E〉 = |j,m; r〉 E = 1
2j (j + 1). (7.3)

We now discuss the distribution of the energies in the coherent state. The computer simulations
indicate that the function

pj,m(x, l) = |〈j,m; r|z〉|2
〈z|z〉 −j � m � j (7.4)

determined by (5.14) and (6.1), which gives the probability of finding the system in the state
|j,m; r〉, when the system is in the normalized coherent state |z〉/√〈z|z〉, has the following
properties. For fixed integer m = l3 the function pj,m has a maximum at jmax coinciding with
the integer nearest to the positive root of the equation

j (j + 1) = l2 (7.5)

(see figure 1). Thus, it turns out that the parameter 1
2 l2 can be regarded as the energy of the

particle. Further, for fixed integer j in pj,m(x, l) (see figure 2), such that (7.5) holds, the
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Figure 2. The plot of lnpj,m with x = (0.411, 0.911, 0.036) and l = (−17.490, 7.490, 10). The
fixed j = 21 corresponds to the positive root of (7.5) where l2 = 462. The function has the
maximum at mmax = l3 = 10.

function pj,m has a maximum at mmax coinciding with the integer nearest to l3. It thus appears
that the parameter l3 can be identified with the projection of the momentum on the x3-axis.

8. Conclusion

In this work we have introduced coherent states for a quantum particle on a sphere. An
advantage of the formalism used is that the coherent states are labelled by points of the classical
phase space. The authors have not found alternative constructions of coherent states for a
quantum mechanics on a sphere preserving this fundamental property of coherent states. As
pointed out in section 6, the quantum fluctuations arising in the case of motion on a sphere
are bigger than those which take place for circular motion. This observation is consistent with
the appearance of the additional degree of freedom for motion on a sphere. We remark that as
with the particle on a circle, we deal within the actual treatment with the deformation of the
classical phase space expressed by the approximate relations (6.2) and (6.6). We also point
out that besides (6.2) and (6.6) the quasi-classical character of the introduced coherent states is
confirmed by the behaviour of the distribution of the energies investigated in section 7. It seems
that the approach introduced in this paper is not restricted to the study of the quasi-classical
aspects of the quantum motion on a sphere. For example, the results of this work would be
of importance in the theory of quantum chaos. In fact, in this theory the kicked rotator is one
of the most popular model systems. Because of the well known difficulties in the analysis of
the Heisenberg uncertainty relations occurring in the case with observables having a compact
spectrum, such as the position operator X satisfying the e(3) algebra (3.4), we have not studied
them herein. The analysis of the Heisenberg uncertainty relations as well as the discussion of
the case with a non-vanishing twist will be performed in future work.
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